发表论文
截止2023年10月,发表高水平期刊论文200余篇,其中SCI检索论文110余篇,EI检索论文150余篇。
英文期刊论文:
第一作者(通讯)SCI论文
2023
[1] Wei T., Zhang B., Wang S., et al. Numerical analysis of passive safety injection driven by natural circulation in floating nuclear power plant[J]. Energy, 2023, 263: 126077.
[2] Li X., Qi C., Cheng K., et al. Application of particle image velocimetry on velocity distribution in 5× 5 rod bundle channel under rolling motion[J]. Annals of Nuclear Energy, 2023, 186: 109755.
[3] Xing L., Zhao F., Dong X., et al. Numerical investigation about radius ratio effect of helical tubes in the heat exchanger[J]. Nuclear Engineering and Design, 2023, 414: 112525.
[4] Ming Y., Tian R., Zhao F., et al. Control strategies and transient characteristics of a 5MWth small modular supercritical CO2 Brayton-cycle reactor system[J]. Applied Thermal Engineering, 2023, 235: 121302.
[5] Xu S, Yue J, Zhang J, et al. Numerical analysis on flow distribution of nuclear reactor core inlet under ocean conditions[J]. Nuclear Engineering and Design, 2023, 414: 112576.
[6] Zhu J, Lin Y, Cheng H, et al. Numerical simulation of ultrasonic velocity in wet steam[J]. Nuclear Engineering and Design, 2023, 414: 112578.、
[7] Wang X, Dong X, Li Z, et al. Transient characteristics analysis of residual heat removal system for Helium-Xenon mixture cooled small reactor system[J]. Nuclear Engineering and Design, 2023, 410: 112387.
[8] Dai Y, Peng L, Juan Z, et al. An Intelligent Fault Diagnosis Method for Imbalanced Nuclear Power Plant Data Based on Generative Adversarial Networks[J]. Journal of Electrical Engineering & Technology, 2023: 1-16.
[9] Wang X, Zhao F, He Y, et al. Development and verification of helium–xenon mixture cooled small reaction system[J]. Progress in Nuclear Energy, 2023, 160: 104679.
[10] Lu R, Zhao F, Li Z, et al. Numerical investigation of thermal stress in the fuel element of high-temperature air-cooled nuclear reactor[J]. Progress in Nuclear Energy, 2023, 157: 104595.
[11] Mai D, Zhao F, Zhao Y, et al. Separation characteristics analysis and optimization design of AP1000 wave type separator[J]. Progress in Nuclear Energy, 2023, 157: 104571.
[12] Li Y, Li H, Zhang Y, et al. Experimental study on condensation and acoustic characteristics of steam underwater injection[J]. Frontiers in Energy Research, 2023, 11: 1027624.
[13] Li Y, Li H, Zhang Y, et al. Experimental study on condensation and acoustic characteristics of steam underwater injection[J]. Frontiers in Energy Research, 2023, 11: 1027624.
[14] Ala A A, Tan S, Qiao S, et al. Simulation of the effect of partial and total blockage of a sub-channel on two-phase flow through a 5 x 5 square rod bundle[J]. Progress in Nuclear Energy, 2023, 155: 104514.
2022
[15] Liu Q., Lu R., Qiao Y., et al. Analysis of the correction factors and coupling characteristics of multi-droplet evaporation[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123138.
[16] Yu X., Zhang Y., Qiao S., et al. Experimental study on the structure of the velocity boundary layer in a 3× 3 rod bundle channel[J]. Experimental Thermal and Fluid Science, 2022, 137: 110685.
[17] Yu X., Zhang Y., Li S., et al. Simultaneous measurement of the structures of the velocity and thermal boundary layers in the rod bundle channel[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122906.
[18] Yuan D., Deng J., Zhu J., et al. Simultaneous temperature field investigations of blockage accidents in a narrow rectangular channel by experiments and simulations[J]. Annals of Nuclear Energy, 2022, 171: 109007.
[19] Ning K., He Y., Huang D., et al. Modelling research on the control scheme and control characteristic of a small gas-cooled reactor[J]. Progress in Nuclear Energy, 2022, 147: 104189.
[20] Wang W, Zhou Y, Liang B, et al. Electrochemical behavior and corrosion rate prediction study of alloy 690[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2022, 4(4): 171-176.
[21] Liao H, Wang X, Ma J, et al. Characteristic analysis of natural circulation residual heat removal in small reactor[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2022, 4(4): 187-195.
[22] Ju W, Dong X, Lu R, et al. Heat transfer performance of high temperature and high velocity hydrogen flow and analysis of blockage characteristics[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2022, 4(4): 205-216.
[23] Ju W, Wu Y, Lin S, et al. Visual experimental study of droplet impinging on liquid film and analysis of droplet evolution characteristics[J]. Experimental and Computational Multiphase Flow, 2022: 1-9.
[24] Li X, Cheng K, Huang T, et al. Research on false alarm detection algorithm of nuclear power system based on BERT-SAE-iForest combined algorithm[J]. Annals of Nuclear Energy, 2022, 170: 108985.
[25] Wei T, Chen J, Zhang B, et al. Effects of ocean conditions on water level measurement of pressurizer[J]. Annals of Nuclear Energy, 2022, 169: 108913.
[26] Wen J, Tian R, Tan S, et al. Numerical simulation of gas holdup in nocoalescence media of industrial-scale bubble column[J]. Progress in Nuclear Energy, 2022, 146: 104172.
[27] Han R, Zhang A M, Tan S, et al. Interaction of cavitation bubbles with the interface of two immiscible fluids on multiple time scales[J]. Journal of Fluid Mechanics, 2022, 932: A8.
[28] Ming Y, Liu K, Zhao F, et al. Dynamic modeling and validation of the 5 MW small modular supercritical CO2 Brayton-Cycle reactor system[J]. Energy Conversion and Management, 2022, 253: 115184.
[29] Wang P, Qi P, Yuan D, et al. Experimental research of nine parallel plane jets in non-blocking and blocking conditions[J]. Annals of Nuclear Energy, 2022, 166: 108747.
[30] Li X, Cheng K, Huang T, et al. Research on short term prediction method of thermal hydraulic transient operation parameters based on automated deep learning[J]. Annals of Nuclear Energy, 2022, 165: 108777.
2021
[31]Yuan D, Deng J, Zhang X, et al. Experimental investigation of turbulent flow under different Reynolds numbers and blockage ratios in a heated rectangular channel[J]. Annals of Nuclear Energy, 2021, 164: 108608.
[32] Li X, Cheng K, Huang T, et al. Equivalence analysis of simulation data and operation data of nuclear power plant based on machine learning[J]. Annals of Nuclear Energy, 2021, 163: 108507.
[33] He Y, Cheng K, Qiu Z, et al. Research on power flattening method and neutron characteristic analysis of a megawatt-class space gas-cooled fast reactor[J]. Annals of Nuclear Energy, 2021, 161: 108456.
[34] Meng T, Cheng K, Zhao F, et al. Dynamic simulation of the gas-cooled space nuclear reactor system using SIMCODE[J]. Annals of Nuclear Energy, 2021, 159: 108293.
[35] Huang D, Ning K, Zhao F, et al. Study on heat transfer characteristics of liquid droplet radiator: With vs without inter-droplets coupling[J]. Annals of Nuclear Energy, 2021, 156: 108199.
[36] Lu R, Qiu Z, He Y, et al. Investigation of fluid-structure Interaction of fuel element in high speed and high temperature air cooled reactor[J]. Annals of Nuclear Energy, 2021, 160: 108400.
[37] Li X, Qi P, Li D, et al. Visualization experimental study on axial flow-induced vibration of slender cantilever rod for reactor[J]. Annals of Nuclear Energy, 2021, 160: 108357.
[38] Wei H, Quintanilla V, Chen Y, et al. The numerical simulation and analysis of turbulent flow behavior in 5× 5 fuel rod bundle with split-type mixing vane[J]. Annals of Nuclear Energy, 2021, 159: 108324.
[39] Yuan D, Deng J, Han R, et al. Experimental study on flow structures of central blockage accidents in a rectangular channel using PIV and POD[J]. Annals of Nuclear Energy, 2021, 153: 108037.
[40] Qiao S, Zhong W, Wang S, et al. Numerical simulation of single and two-phase flow across 90° vertical elbows[J]. Chemical Engineering Science, 2021, 230: 116185.
[41] Eltayeb A, Tan S, Ala A A, et al. The study of the influence of slug density on the mixing performance in the reactor vessel, using PLIF experiment and FLUENT simulation[J]. Progress in Nuclear Energy, 2021, 131: 103558.
2020
[42] Lu R, Li Z, Zhao J, et al. Numerical investigation of heat transfer characteristics of high-speed and high-temperature air cooled open-cycle reactor[J]. Applied Thermal Engineering, 2020, 179: 115542.
[43] Li X, Qi P, Tan S, et al. Experimental study of transient friction characteristics and velocity distribution of pulsatile flow in rod bundles[J]. Annals of Nuclear Energy, 2020, 140: 107124.
[44] Qi P, Li X, Qiu F, et al. Application of particle image velocimetry measurement technique to study pulsating flow in a rod bundle channel[J]. Experimental Thermal and Fluid Science, 2020, 113: 110047.
[45] Abbati Z, Chen J, Cheng K, et al. An experimental study of two-phase flow instability in a multi-loop natural circulation system[J]. Annals of Nuclear Energy, 2020, 139: 107269.
[46] Meng T, Cheng K, Zhao F, et al. Computational flow and heat transfer design and analysis for 1/12 gas-cooled space nuclear reactor[J]. Annals of Nuclear Energy, 2020, 135: 106986.
[47] Liang R, Wang D, Liu J, et al. Effect of debris combination on flow resistance of fuel assemblies[J]. Annals of Nuclear Energy, 2020, 149: 107788.
[48] Ala A A, Tan S, Eltayeb A, et al. Simulation of low-Re pulsatile flow through bare 5 x 5 square arrayed rod bundles[J]. Progress in Nuclear Energy, 2020, 129: 103487.
[49] Wang D, Chang B, Zhang T, et al. Evaluation of chemical effects on fuel assembly blockage following a loss of coolant accident in nuclear power plants[J]. International Journal of Energy Research, 2020, 44(7): 5488-5499.
[50] Li Y, He C, Qiu J, et al. Numerical study on transient response characteristics of natural circulation in coupled loops under ocean condition[J]. Progress in Nuclear Energy, 2020, 124: 103248.
[51] Qi P, Wang P, Hao S, et al. Experimental study of flow structures in a large range downstream the spacer grid in a 5× 5 rod bundle using TR-PIV[J]. International Journal of Heat and Fluid Flow, 2020, 84: 108619.
[52] Zahraddeen A, Chen J, Cheng K, et al. Preliminary experimental validation of multi-loop natural circulation model based on RELAP5/SCDAPSIM/MOD 4.0[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2020, 2: 25-33.
2019
[53] Meng T, Zhao F, Cheng K, et al. Neutronics analysis of megawatt-class gas-cooled space nuclear reactor design[J]. Journal of Nuclear Science and Technology, 2019, 56(12): 1120-1129.
[54] Zhang Q, Su J, Du W, et al. Experimental study on mixing phenomenon inside reactor down-comer under single-loop injection using laser induced fluorescence[J]. Progress in Nuclear Energy, 2019, 117: 103046.
[55] Zhao F, Yan X, Bo H, et al. Application of droplet motion and phase change model in containment spray system[J]. Annals of Nuclear Energy, 2019, 131: 123-137.
[56] Ala A A, Tan S, Eltayeb A, et al. Experimental study of velocity components of low-RE pulsatile flow through bare rod bundle[J]. Annals of Nuclear Energy, 2019, 131: 221-232.
[57] Qi P, Li X, Li X, et al. Experimental study on the resistance characteristics of the rod bundle channel with spacer grid under low-frequency pulsating flows[J]. Annals of Nuclear Energy, 2019, 131: 80-92.
[58] Zhao F, Liu Q, Yan X, et al. Droplet motion and phase change model with two-way coupling[J]. Journal of Thermal Science, 2019, 28: 826-833.
[59] Qi P, Li X, Li X, et al. Experimental investigation of the turbulent flow in a rod bundle channel with spacer grids[J]. Annals of Nuclear Energy, 2019, 130: 142-156.
[60] Zhao F, Liu Q, Yu L, et al. Ratio analysis of two mechanisms of static droplet evaporation driven by pressure difference[J]. Experimental and Computational Multiphase Flow, 2019, 1: 116-129.
[61] Ala A A, Tan S, Eltayeb A, et al. Experimental study on sudden contraction and split into the inlets of two parallel rectangular jets[J]. Experimental Thermal and Fluid Science, 2019, 104: 272-283.
[62] Du W, Liu Y, Yuan H, et al. Experimental investigation on natural convection and thermal stratification of IRWST using PIV measurement[J]. International journal of Heat and mass transfer, 2019, 136: 128-145.
[63] Eltayeb A, Tan S, Qi Z, et al. PLIF experimental validation of a FLUENT CFD model of a coolant mixing in reactor vessel down-comer[J]. Annals of Nuclear Energy, 2019, 128: 190-202.
[64] Meng T, Cheng K, Zeng C, et al. Preliminary control strategies of megawatt-class gas-cooled space nuclear reactor with different control rod configurations[J]. Progress in Nuclear Energy, 2019, 113: 135-144.
[65] Cheng K, Meng T, Zhao F, et al. Development and validation of a thermal hydraulic transient analysis code for offshore floating nuclear reactor based on RELAP5/SCDAPSIM/MOD3. 4[J]. Annals of Nuclear Energy, 2019, 127: 215-226.
[66] Cheng K, Meng T, Tan S, et al. Experimental study on natural circulation flow instability in parallel boiling channels under low pressure[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1126-1136.
[67] Zeng C, Tan S, Qiao S, et al. A simplified method for calculating the heat rejection from a rectangle droplet sheet[J]. International Journal of Heat and Mass Transfer, 2019, 132: 762-771.
[68] Li X, Qi P, Zhao T, et al. LIF study of temporal and spatial fluid mixing in an annular downcomer[J]. Annals of Nuclear Energy, 2019, 126: 220-232.
[69] Liu Z, Wang J, Tan S, et al. Multi-objective optimal design of the nuclear reactor pressurizer[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2019, 1: 1-9.
[70] Meng T, Yan X, Zhao F, et al. Application of droplet motion and evaporation model in fuel spray in the constant volume bomb[J]. Journal of Thermal Science and Technology, 2019, 14(1): JTST0003-JTST0003.
[71] Li X, Mi Z, Tan S, et al. Experimental investigation of fluid mixing inside a rod bundle using laser induced fluorescence[J]. Progress in Nuclear Energy, 2019, 110: 90-102.
2018
[72] Ala A A, Tan S, Eltayeb A, et al. Effects of low-Re pulsatile flow on friction characteristics in bare square array rod bundles[J]. Annals of Nuclear Energy, 2018, 120: 630-641.
[73] Li X, Mi Z, Tan S, et al. PIV study of velocity distribution and turbulence statistics in a rod bundle[J]. Annals of Nuclear Energy, 2018, 117: 305-317.
[74] Yuan H, Tan S, Du W, et al. Heterogeneous bubble nucleation model on heated surface based on free energy analysis[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1198-1209.
[75] Cheng K, Meng T, Tian C, et al. Experimental investigation on flow characteristics of pressure drop oscillations in a closed natural circulation loop[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1162-1171.
[76] Chen X, Gao P, Tan S, et al. An experimental investigation of flow boiling instability in a natural circulation loop[J]. International Journal of Heat and Mass Transfer, 2018, 117: 1125-1134.
2017
[77] Zhuang, N., Tan S., and H. Yuan, 2017, Flow resistance of low-frequency pulsatile turbulent flow in mini-channels. International Journal of Heat and Fluid Flow, v 65: p. 21-32.
[78] Chen H, Gao P, Tan S, et al. Online sequential condition prediction method of natural circulation systems based on EOS-ELM and phase space reconstruction[J]. Annals of Nuclear Energy, 2017, 110: 1107-1120.
2016
[79] Yuan H, Tan S, Feng L, et al. Heterogeneous bubble nucleation on heated surface from insoluble gas[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1185-1192.
[80] Zhuang N, Tan S, Yuan H. The friction characteristics of low-frequency transitional pulsatile flows in narrow channel[J]. Experimental Thermal and Fluid Science, 2016, 76: 352-364.
[81] Wang X, Wang R, Du S, et al. Flow visualization and mixing quantification in a rod bundle using laser induced fluorescence[J]. Nuclear Engineering and Design, 2016, 305: 1-8.
[82] Yu Z, Yuan H, Chen C, et al. Two-phase flow instabilities of forced circulation at low pressure in a rectangular mini-channel[J]. International Journal of Heat and Mass Transfer, 2016, 98: 438-447.
[83] Yuan H, Tan S, Zhuang N, et al. Flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion[J]. Annals of Nuclear Energy, 2016, 87: 527-536.
[84] Chen C, Gao P, Tan S, et al. Boiling heat transfer characteristics of pulsating flow in rectangular channel under rolling motion[J]. Experimental Thermal and Fluid Science, 2016, 70: 246-254.
[85] Yu Z, Tan S, Yuan H, et al. Experimental investigation on flow instability of forced circulation in a mini-rectangular channel under rolling motion[J]. International journal of heat and mass transfer, 2016, 92: 732-743.
[86] Yuan H, Tan S, Wen J, et al. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia[J]. International Journal of Thermal Sciences, 2016, 99: 152-160.
2015
[87]Chen C, Gao P, Tan S, et al. Effect of rolling motion on two-phase frictional pressure drop of boiling flows in a rectangular narrow channel[J]. Annals of Nuclear Energy, 2015, 83: 125-136.
[88] Chen C, Gao P, Tan S, et al. Forced convective boiling heat transfer of water in vertical rectangular narrow channel[J]. Nuclear Engineering and Design, 2015, 291: 133-144.
[89] Chen C, Gao P, Tan S, et al. Theoretical calculation of the characteristics of annular flow in a rectangular narrow channel[J]. Annals of Nuclear Energy, 2015, 85: 259-270.
[90] Yu Z, Lan S, Yuan H, et al. Temperature fluctuation characteristics in a mini-rectangular channel under rolling motion[J]. Progress in Nuclear Energy, 2015, 81: 203-216.
[91] Li S, Tan S, Xu C, et al. Visualization study of bubble behavior in a subcooled flow boiling channel under rolling motion[J]. Annals of nuclear energy, 2015, 76: 390-400.
[92] Li S, Tan S, Yuan H. Theoretical study on temperature oscillation of a parallel-plate in pulsating flow condition[J]. International Journal of Heat and Mass Transfer, 2015, 81: 28-32.2014-2009
[93] Yuan H, Tan S, Zhuang N, et al. Theoretical analysis of wall thermal inertial effects on heat transfer of pulsating laminar flow in a channel[J]. International Communications in Heat and Mass Transfer, 2014, 53: 14-17.
[94] Li S, Tan S, Gao P, et al. Experimental research of bubble number density and bubble size in narrow rectangular channel under rolling motion[J]. Nuclear Engineering and Design, 2014, 268: 41-50.
[95] Zhuang N, Tan S, Yuan H, et al. Flow resistance characteristics of pulsating laminar flow in rectangular channels[J]. Annals of Nuclear Energy, 2014, 73: 398-407.
[96] Zhang W, Tan S, Gao P, et al. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition[J]. Annals of Nuclear Energy, 2014, 65: 1-9..
[97] Tan S, Wang Z, Wang C, et al. Flow fluctuations and flow friction characteristics of vertical narrow rectangular channel under rolling motion conditions[J]. Experimental thermal and fluid science, 2013, 50: 69-78.
[98] Xing D, Yan C, Sun L, et al. Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions[J]. Annals of Nuclear Energy, 2013, 53: 109-119.
[99] Wang C, Gao P, Tan S, et al. Forced convection heat transfer and flow characteristics in laminar to turbulent transition region in rectangular channel[J]. Experimental Thermal and Fluid Science, 2013, 44: 490-497.
[100] Wang C, Gao P, Tan S, et al. Experimental study of friction and heat transfer characteristics in narrow rectangular channel[J]. Nuclear engineering and design, 2012, 250: 646-655.
[101] Estrada-Pérez C E, Hassan Y A, Tan S. Experimental characterization of temperature sensitive dyes for laser induced fluorescence thermometry[J]. Review of Scientific Instruments, 2011, 82(7).
[102] Gao P, Liu T, Yang T, et al. Pressure drop fluctuations in periodically fluctuating pipe flow[J]. Journal of Marine Science and Application, 2010, 9(3): 317-322.
[103] Tan S, Su G H, Gao P. Experimental and theoretical study on single-phase natural circulation flow and heat transfer under rolling motion condition[J]. Applied Thermal Engineering, 2009, 29(14-15): 3160-3168.
[104] Tan S, Su G H, Gao P. Experimental study on two-phase flow instability of natural circulation under rolling motion condition[J]. Annals of Nuclear Energy, 2009, 36(1): 103-113.
[105] Tan S., G. H. Su, Gao Pu-zhen. Heat transfer model of single-phase natural circulation flow under a rolling motion condition. Nuclear Engineering and Design, Volume 239, Issue 10, October 2009, Pages 2212-2216.
中文期刊论文:
[1] 谭思超,张红岩,庞凤阁,高璞珍. 单相-两相自然循环过渡点的实验研究. 哈尔滨工程大学学报. 2005. (03)
[2] 谭思超, 张红岩, 庞凤阁, 高璞珍. 摇摆运动下单相自然循环流动特点. 核动力工程. 2005. (06)
[3] 谭思超,庞凤阁. 摇摆运动引起的波动与自然循环密度波型脉动的叠加. 核动力工程. 2005. (02)
[4] 谭思超, 庞凤阁, 高璞珍. 自然循环过冷沸腾流动不稳定性实验研究. 核动力工程. 2006. (01)
[5] 谭思超, 庞凤阁, 高璞珍. 低压两相自然循环流动不稳定实验研究. 哈尔滨工程大学学报. 2006. (02)
[6] 谭思超, 庞凤阁, 高璞珍. 摇摆对自然循环传热特性影响的实验研究. 核动力工程. 2006. (05)
[7] 谭思超, 高文杰, 高璞珍, 苏光辉. 摇摆运动对自然循环流动不稳定性的影响. 核动力工程. 2007. (05)
[8] 谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环流动的实验和理论研究. 哈尔滨工程大学学报. 2007. (11)
[9] 谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环复合型脉动的实验研究. 原子能科学技术. 2008. (11)
[10] 谭思超, 高璞珍, 秦胜杰, 黄彦平, 苏光辉. 低流速自然循环过冷沸腾汽泡脱离点实验研究. 核科学与工程. 2008. (04)
[11] 谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环温度波动特性. 原子能科学技术. 2008. (08)
[12] 谭思超, 高璞珍, 苏光辉. 摇摆运动下系统空间布置对自然循环流动特性的影响. 西安交通大学学报. 2008. (11)
[13] 张文超, 谭思超, 高璞珍, 张虹, 张红岩. 摇摆条件下自然循环流动不稳定性的混沌特性研究. 原子能科学技术. 2012. (06)
[14] 张文超, 谭思超, 高璞珍. 摇摆参数对自然循环系统混沌脉动影响分析. 哈尔滨工程大学学报. 2012. (06)
[15] 刘宇生, 谭思超, 高璞珍, 袁其斌. 矩形通道内脉动层流流场特性理论研究. 原子能科学技术. 2012. (11)
[16] 张文超, 谭思超, 高璞珍, 张虹, 张红岩. 摇摆条件下自然循环流动不稳定性非线性演化特性研究. 原子能科学技术. 2012. (11)
[17] 刘宇生, 谭思超, 高璞珍, 张虹. 矩形通道内脉动层流阻力特性实验研究. 原子能科学技术. 2013. (02)
[18] 李少丹, 谭思超, 许超, 高璞珍, 徐建军. 窄通道内不凝结气体对过冷沸腾汽泡行为的影响. 原子能科学技术. 2013. (03)
[19] 王占伟, 谭思超, 张文超, 高璞珍, 张虹, 杜思佳. 摇摆运动下自然循环高含汽率流动特性研究. 原子能科学技术. 2013. (03)
[20] 张文超, 谭思超, 高璞珍. 基于Lyapunov指数的摇摆条件下自然循环流动不稳定性混沌预测. 物理学报. 2013. (06)
[21] 张文超, 谭思超, 高璞珍. 摇摆条件下自然循环系统流量混沌脉动的检验与预测. 物理学报. 2013. (14)
[22] 谭思超, 王占伟, 兰述, 张虹. 摇摆运动下窄矩形通道单相瞬变流动时均阻力特性研究. 核动力工程. 2013. (S1)
[23] 张川, 谭思超, 赵佳宁, 刘宇生, 高璞珍, 张虹. 窄矩形通道内脉动流过渡特性实验研究. 原子能科学技术. 2013. (09)
[24] 张连胜, 张红岩, 谭思超, 张文超, 高璞珍, 张虹. 摇摆运动下单相自然循环核热耦合特性研究. 原子能科学技术. 2013. (10)
[25] 张连胜, 谭思超, 赵翠娜, 高璞珍, 张虹. 摇摆对自然循环核热耦合平均功率的影响. 原子能科学技术. 2013. (11)
[26] 文静, 谭思超, 付学宽, 孟涛, 宋禹林. 横向震荡条件下水中气泡速度特性实验研究. 核动力工程. 2016. (01)
[27] 袁红胜, 谭思超, 庄乃亮, 唐凌虹, 张川, 张虹. 矩形通道内加减速条件下流态转捩特性研究. 核动力工程. 2014. (06)
[28] 张川, 谭思超, 赵佳宁, 袁其斌, 张虹. 非稳态条件下平板通道内层流速度分布研究. 原子能科学技术. 2014. (01)
[29] 李少丹, 谭思超, 高璞珍, 许超, 高风. 窄通道内的汽泡核化以及滑移汽泡的影响. 原子能科学技术. 2014. (05)
[30] 宋禹林, 谭思超, 付学宽. 晃荡对气泡上升运动影响的数值研究. 核动力工程. 2014. (S1)
[31] 李少丹, 谭思超, 高璞珍, 许超, 胡健, 郑强. 周期力场下窄通道内汽泡滑移实验研究. 哈尔滨工程大学学报. 2014. (08)
[32] 李少丹, 林原胜, 谭思超, 高璞珍. 双色平面激光诱导荧光法测温技术研究. 核动力工程. 2014. (04)
[33] 李少丹, 谭思超, 许超, 高璞珍, 庄乃亮. 流动沸腾条件下窄通道内的汽泡生长和冷凝. 原子能科学技术. 2014. (S1)
[34] 张晓玉, 谭思超, 余志庭, 宋禹林, 张虹. 摇摆参数对自然循环下波谷型脉动的影响. 原子能科学技术. 2015. (01)
[25] 谭思超, 赵富龙, 李少丹, 高璞珍. VOF模型界面传质与体积传质的转换方法. 哈尔滨工程大学学报. 2015. (03)
[36] 李少丹, 谭思超, 高璞珍, 许超. 摇摆运动对窄通道内汽液界面参数的影响. 核动力工程. 2015. (02)
[37] 宋禹林, 谭思超, 付学宽, 李小辉. 晃荡条件下气泡上升速度特性研究. 哈尔滨工程大学学报. 2015. (06)
[38] 王啸宇, 谭思超, 李少丹, 岳冲. 基于激光诱导荧光法的空泡份额测量. 原子能科学技术. 2015. (11)
[39] 郭嘉,赵富龙,宁可为等.基于子通道模型的超临界二氧化碳燃料组件热工特性分析[J].原子能科学技术,2023,57(09):1740-1749.
[40] 齐超,李鑫,谭思超等.摇摆条件下棒束通道流场特性研究[J].核动力工程,2023,44(S1):35-39.
[41] 魏天一,张彪,李东阳等.海洋条件下小型堆稳压器液位智能预测研究[J].哈尔滨工程大学学报,2023,44(09):1590-1596.
[42] 刘宇生,谭思超,靖剑平等.ACME台架PRHR管线破口试验自然循环现象研究[J].核技术,2023,46(06):95-103.
[43] 谭思超,李桐,刘永超等.关于人工智能在核能领域应用的若干思考[J].核动力工程,2023,44(02):1-8.
[44] 赵富龙,董想,赵渊等.液滴撞击空间辐射换热器壁面演化特性[J].哈尔滨工程大学学报,2022,43(12):1677-1682.
[45] 宁可为,宋帅,赵富龙等.月基核电源堆芯设计及物理热工特性分析[J].核动力工程,2022,43(S2):118-124.
[46] 董显敏,宁可为,赵富龙等.堵流工况下氦氙混合气体流动换热特性[J].哈尔滨工程大学学报,2022,43(12):1706-1711.
[47] 张振国,李小畅,谭思超等.钠冷快堆直流蒸汽发生器跨尺度耦合分析[J].原子能科学技术,2022,56(11):2354-2364.
[48] 袁东东,邓坚,谭思超等.矩形通道边缘堵塞和中心堵塞事故实验研究[J].核动力工程,2022,43(06):66-72.
[49] 张永豪,于晓勇,刘卢果等.矩形通道速度边界层可视化实验研究[J].原子能科学技术,2023,57(03):503-513.
[50] 刘宇生,王庶光,李东阳等.堆芯补水箱内热工水力现象识别与研究[J].核安全,2022,21(04):66-73.
[51] 李翔宇,程坤,谭思超等.基于Adaboost算法的核电站故障诊断方法[J].核动力工程,2022,43(04):118-125.
[52] 魏天一,张彪,谭思超等.海洋条件下安注水箱晃荡特性实验研究[J].原子能科学技术,2023,57(01):84-93.
[53] 乔守旭,钟文义,谭思超等.基于PCA-GA-SVM的竖直下降两相流流型预测[J].核动力工程,2022,43(03):85-93.
[54] 李兴,王强龙,谭思超等.脉动流下定位格架下游时均流场分布特性研究[J].核动力工程,2022,43(03):46-52.
[55] 李旭鹏,钟文义,乔守旭等.基于AFSA-RF的两相流型图扩展技术[J].原子能科学技术,2022,56(08):1584-1592.
[56] 李翔宇,程坤,黄涛等.核电站瞬态运行参数数据压缩与复原方法[J].哈尔滨工程大学学报,2021,42(12):1720-1725.
[57] 卢瑞博,宁可为,邱志方等.空气流动换热数值计算模型适用性分析[J].哈尔滨工程大学学报,2021,42(12):1733-1738.
[58] 何宇豪,孟涛,王宪礴等.兆瓦级空间反应堆辐射特性分析[J].哈尔滨工程大学学报,2021,42(12):1726-1732.
[59] 朱雁凌,王啸宇,游尔胜等.双钩波形板汽水分离器疏水钩优化研究[J].原子能科学技术,2021,55(10):1780-1787.
[60] 于晓勇,祁沛垚,乔守旭等.5×5棒束通道局部阻塞流场实验研究[J].原子能科学技术,2021,55(11):1976-1983.
[61] 邱枫,祁沛垚,于晓勇等.加减速流条件下棒束通道阻力特性研究[J].原子能科学技术,2022,56(07):1285-1292.
[62] 李兴,王强龙,邱金荣等.加/减速流动下棒束通道内速度分布和湍流特性研究[J].原子能科学技术,2021,55(09):1692-1699.
[63] 买丹婕,方华伟,黄笛等.空间反应堆系统液体层辐射换热特性分析[J].原子能科学技术,2021,55(S2):203-212.
[64] 陈明鹏,张彪,谭思超等.窄矩形多通道流动传热特性数值分析[J].核动力工程,2021,42(S1):47-52.
[65] 程坤,邱志方,陈宝文等.海洋条件下浮动反应堆运行特性的数值模拟研究[J].核安全,2021,20(02):67-72.
[66] 黄笛,李仲春,余霖等.氦氙混合比例对堆内通道流动换热特性影响[J].哈尔滨工程大学学报,2021,42(05):745-750.
[67] 郝思佳,乔守旭,祁沛垚等.堵塞条件下紧密栅湍流交混特性研究[J].原子能科学技术,2021,55(05):829-839.
[68] 郝思佳,祁沛垚,钟文义等.堵塞条件下棒束通道的流场与阻力特性[J].哈尔滨工程大学学报,2021,42(02):308-316.
[69] 乔守旭,钟文义,谭思超等.竖直下降两相流相界面结构输运特性[J].原子能科学技术,2021,55(02):229-236.
[70] 孟涛,夏陈超,赵富龙等.空间反应堆堆芯流动换热特性优化研究[J].载人航天,2020,26(05):624-629+670.
[71] 祁沛垚,邓坚,谭思超等.基于PIV技术的低雷诺数下棒束通道流场研究[J].核动力工程,2021,42(01):18-22.
[72] 祁沛垚,李兴,邓坚等.脉动流条件下棒束通道阻力特性研究[J].原子能科学技术,2021,55(05):840-848.
[73] 乔守旭,谭思超,高璞珍等.中美核学科硕士留学生培养对比研究——以宾州州立大学与哈尔滨工程大学为例[J].教育现代化,2020,7(56):1-5.
[74] 祁沛垚,郝思佳,苏建科等.脉动流下棒束通道内流场与湍流特性的PIV实验研究[J].原子能科学技术,2021,55(01):142-150.
[75] 郝思佳,李兴,祁沛垚等.5×5棒束通道内流动转捩特性研究[J].原子能科学技术,2020,54(12):2376-2384.
[76] 明杨,易经纬,方华伟等.直接布雷顿循环气冷反应堆系统运行特性分析[J].原子能科学技术,2020,54(07):1168-1175.
[77] 米争鹏,谭思超,邹思远等.棒束通道内温度场分布特性研究[J].原子能科学技术,2020,54(09):1644-1651.
[78] 乔守旭,谭思超,高璞珍.核能工程硕士留学生课程建设探索与实践[J].中国电力教育,2020(04):59-60.
[79] 何宇豪,孟涛,卢瑞博等.空间核反应堆电源研究进展[J].上海航天,2019,36(06):126-133.
[80] 刘鹏亮,李鑫,李东阳等.燃料相关组件棒流致振动可视化实验研究[J].哈尔滨工程大学学报,2019,40(08):1427-1432.