[13] Xu, T.; Wei, X.; Zhao, F.; Wang, G.; Deng, Z.; Zhao, J*.; Yao, J., One-step synthesis of CdS hierarchical microspheres and its ethanol sensing property. Appl. Surf. Sci. 2022, 595, 153545.(IF: 7.392)
[12] Zhao, J.;Ying, Y; Wang, G; Hu, K; Yuan, Y.D; Ye, H; Liu, Z; Lee, J.Y; Zhao, D;Covalent Organic Framework Film Protected Zinc Anode for Highly Stable Rechargeable Aqueous Zinc-Ion Batteries, Energy Storage Mater., 2022, 48: 82-89. (IF: 20.831)
[11] Zhu, M.; Yan, Q.; Bai, X.; Cai, H.; Zhao, J*.; Yan, Y.; Zhu, K.; Ye, K.; Yan, J.; Cao, D.; Wang, G., Construction of reduced graphene oxide coupled with CoSe2-MoSe2 heterostructure for enhanced electrocatalytic hydrogen production. J. Colloid Interf. Sci. 2022, 608, 922-930.(IF: 9.965)
[10] Zhao, J.; Yuan, H.; Wang, G., Zhao, D., Stabilization of Lithium Metal Anodes by Conductive Metal-Organic Framework Architectures. J. Mater. Chem. A. 2021, 9, 12099-12108. (IF: 14.511)
[9] Zhao, J.; Gong, J.; Wang, G.; Zhu, K.; Ye, K.; Yan, J.; Cao, D., A self-healing hydrogel electrolyte for flexible solid-state supercapacitors. Chem. Eng. J 2020, 125456.(IF: 16.744)
[8] Zhao, J.; Wang, G.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D.; Wang, H.-E., Growing NiS2 nanosheets on porous carbon microtubes for hybrid sodium-ion capacitors. J. Power Sources 2020, 451, 227737. (IF: 9.794;ESI高被引文章)
[7] Zhao, J.; Gong, J.; Zhou, C.; Miao, C.; Hu, R.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D.; Zhang, X.; Wang, G., Utilizing human hair for solid-state flexible fiber-based asymmetric supercapacitors. Appl. Surf. Sci. 2020, 145260.(IF: 7.392)
[6] Zhao, J.; Zhou, C.; Li, Y.; Cheng, K.; Zhu, K.; Ye, K.; Yan, J.; Cao, D.; Xie, Y.; Wang, G., Nickel cobalt oxide nanowires‐modified hollow carbon tubular bundles for high‐performance sodium‐ion hybrid capacitors. Int J Energy Res. 2020, 1-10. (IF: 5.164)
[5] Zhao, J.; Wang, G.; Hu, R.; Zhu, K.; Cheng, K.; Ye, K.; Cao, D.; Fan, Z., Ultrasmall-sized SnS nanosheets vertically aligned on carbon microtubes for sodium-ion capacitors with high energy density. J. Mater. Chem. A 2019, 7, 4047–4054.(IF: 14.511)
[4] Zhao, J.; Li, Y.; Chen, X.; Zhang, H.; Song, C.; Liu, Z.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D.; Wang, G.; Zhang, X., Polyaniline-modified porous carbon tube bundles composite for high-performance asymmetric supercapacitors. Electrochim. Acta 2018, 292, 458-467. (IF: 7.336)
[3] Zhao, J.; Li, Y.; Huang, F.; Zhang, H.; Gong, J.; Miao, C.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D.; Wang, G.; Zhang, X., High-performance asymmetric supercapacitor assembled with three-dimensional, coadjacent graphene-like carbon nanosheets and its composite. J. Electroanal. Chem. 2018, 823, 474-481. (IF: 4.598)
[2] Zhao, J.; Gong, J.; Li, Y.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D.; Wang, G., Self N-Doped Porous Interconnected Carbon Nanosheets Material for Supercapacitors. Acta Chim. Sinica 2018, 76 (2), 107-112. (IF: 2.668,获2019年度最具有影响力论文奖)
[1] Zhao, J.; Li, Y.; Wang, G.; Wei, T.; Liu, Z.; Cheng, K.; Ye, K.; Zhu, K.; Cao, D.; Fan, Z., Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. J. Mater. Chem. A 2017, 5 (44), 23085-23093. (IF: 14.511)