专利成果
1.
张中武, 程浩, 孙利昕, 一种超高强度无磁高锰钢棒材的制备方法, CN202310459458.2
2. 张中武, 程浩, 孙利昕, 一种超高强度无磁高锰钢筒形件的制备方法, CN202310453258.6
3. 张中武, 程浩, 孙利昕, 一种1500MPa级无磁高锰钢筒形件的制备方法, CN202310453275.X
4. 赵健, 钱立华, 孟琦杰, 刘小春, 吴翔, 孙利昕, 张武, 曾丽卿, 张家璇, 胡玉峰, 潘菲, 导电铜铬锆合金的制备方法, CN202211655694.3
5. 赵健, 李西敏, 陈劲, 钱立华, 孟琦杰, 刘小春, 吴翔, 孙利昕, 张武, 曾丽卿, 胡玉峰, 潘菲, 铜铬锆合金中铬元素固溶度的评估方法, CN202211334346.6
6. 赵健, 张家璇, 钱立华, 张武, 刘小春, 孟琪杰, 吴翔, 孙利昕, 胡玉峰, 潘菲, 铜铬锆合金板材的轧制方法, CN202211251467.4
7. 孙利昕, 程浩, 张中武, 葛向阳, 一种1200MPa级沉淀强化含钒高锰奥氏体钢及其制备方法, CN202210088194.X
8. 张中武, 程浩, 孙利昕, 一种超高强度无磁高锰钢及其制备方法, CN202210088185.0
9. 崔烨, 张中武, 张春毅, 连宏凯, 李星豪, 余明, 张洋, 孙利昕, 陈丹, 一种CuAlMnCoNi形状记忆合金及其制备方法, CN202111147703.3
10. 崔烨, 张中武, 李星豪, 连宏凯, 张春毅, 孙利昕, 张洋, 陈丹, 一种CuAlMn形状记忆合金及制备方法, CN202111102525.2
11. 张中武, 刘力源, 张洋, 韩基鸿, 李俊澎, 崔烨, 孙利昕, 陈丹, 一种高塑性高强度的高熵合金及其制备方法, CN202110678146.1
12. 张洋, 张中武, 龙邦纂, 崔烨, 孙利昕, 陈丹, 一种耐辐照含Cu纳米团簇强化高强度低合金钢及其制备方法, CN201910979530.8
13. 张洋, 张中武, 蒋文清, 崔烨, 孙利昕, 陈丹, 一种耐辐照抗冲击FeCoCrNiMn高熵合金及其制备方法, CN201910978598.4
14. 张洋, 张中武, 蒋文清, 商永轩, 崔烨, 孙利昕, 陈丹, 一种ZrTiHfNbTa高熵合金及其制备方法, CN201910978597.X
15. 崔烨, 张中武, 范明雨, 韩佳澍, 陈丹, 张洋, 孙利昕, 一种含Er镁合金及制备方法, CN201910977555.4
16. 崔烨, 张中武, 张旺, 刘乃萌, 李昕航, 孙利昕, 张洋, 陈丹, 一种FeMnAlNi形状记忆合金及其制备方法, CN201910633939.4
17. 孙利昕, 张中武, 冯俊伟, 黎席廷, 纪佳楠, 崔烨, 张洋, 陈丹, 一种高强度含钒高锰奥氏体钢中厚板及其制造方法, CN201910584610.3
18. 张中武, 崔烨, 范明雨, 陈俊明, 张洋, 孙利昕, 陈丹, 一种含Ho耐热镁合金及其制备方法, CN201811354331.X
19. 张中武, 崔烨, 辛显亮, 陈丹, 张洋, 孙利昕, 一种CuAlMn形状记忆合金及其制备方法, CN201811251035.7
20. 孙利昕, 张志远, 陶乃镕, 卢柯, 一种高强度高电导率铜铬锆合金及其低温变形制备方法, CN201810059243.0
21. 孙利昕, 陶乃镕, 卢柯, 昆茨·马修斯, 喻家庆, 块体纳米结构低碳钢及其制备方法, CN201010613321.0
发表论文
1. Cheng, Hao, Sun, Lixin*, Song, Hongwu*, Liu, Yingwei, Xiao, Xiyuan, Zhang, Yang, Zhang, Shihong, Zhang, Zhongwu*. (2024). The gradient nanotwin structures in a high-Mn steel prepared by power spinning, Journal of Manufacturing Process, 127, 288. (中科院一区,JCR Q1, IF=6.1)
2. Cheng, Hao, Li Xiting, Sun, Lixin*, Li, Wentao, Xiao, Xiyuan, Zhang, Yang, Cui, Ye, Chen, Dan, Liu, Bin & Zhang, Zhongwu*. (2024). Improving ductility of high strength nanotwinned steel with reverse transformation of epsilon martensite inside nanotwin lamellae, Materials Science and Engineering A,902, 146626. (中科院二区,JCR Q1,IF=6.1)
3. LI, Wentao, Sun, Lixin*, Cheng, Hao, Fan, Mingyu, & Zhang, Zhongwu*. (2024). Improving the tensile ductility of the high-strength nanotwinned high manganese steel by a strategy combining cold rolling and warm rolling, Materials Science and Engineering A,902, 146626. (中科院二区,JCR Q1,IF=6.1)
4. Cheng, Hao, Sun, Lixin*, Li, Wentao, Zhang, Yang, Cui, Ye, Chen, Dan, & Zhang, Zhongwu*. (2024). Enhancing strength–ductility synergy in high-Mn steel by tuning stacking fault energy via precipitation. Journal of Materials Science & Technology, 187, 240-247. (中科院一区,JCR Q1,IF=11.2)
5. Liu, Liyuan, Zhang, Yang*, Zhang, Zhongwu*, Li, Junpeng, Jiang, Weiguo, & Sun, Lixin. (2024). Nanoprecipitate and stacking fault-induced high strength and ductility in a multiscale heterostructured high-entropy alloy. International Journal of Plasticity, 172. doi:10.1016/j.ijplas.2023.103853 (中科院一区,JCR Q1,IF=9.8)
6. Hao, Jingwei, Zhang, Yang*, Ma, Yaxi, Wang, Qingyu, Sun, Lixin, & Zhang, Zhongwu*. (2024). Enhanced plasticity in a Zr-rich refractory high-entropy alloy via electron irradiation. Journal of Nuclear Materials, 590. doi:10.1016/j.jnucmat.2023.154876 (中科院二区,JCR Q1,IF=3.1)
7. Zhao, Guangda, Cui, Ye*, Zhang, Yang*, Li, Xinghao, Sun, Lixin, & Zhang, Zhongwu*. (2023). Abnormal grain growth of FeMnAlNiCo shape memory alloys during directional recrystallisation. Journal of Materials Research and Technology-Jmr&T, 23, 819-829. doi:10.1016/j.jmrt.2023.01.030 (中科院一区,JCR Q1,IF=6.4)
8. Wu, Yiming, Zhou, Chang, Wu, Rui, Sun, Lixin, Lu, Chenyang, Xiao, Yunzhen, Su, Zhengxiong, Gong, Mingyu, Ming, Kaisheng, Liu, Kai, Gu, Chao, Yang, Wenshu, Wang, Jian*, & Wu, Gaohui*. (2023). Synergistic strengthening of Al-SiC composites by nano-spaced SiC-nanowires and the induced high-density stacking faults. Composites Part B-Engineering, 250. doi:10.1016/j.compositesb.2022.110458 (中科院一区,JCR Q1,IF=13.1)
9. Wu, Xiang, Zhang, Jiaxuan, Zhao, Jian, Meng, Qijie, Zhang, Wu, Pan, Fei, Liu, Yongqi, Ximin, Li, Liu, Yujing, Liu, Xiaochun, Sun, Lixin, & Qian, Lihua. (2023). Enhancing the strength and conductivity of commercialized Cu-Cr-Zr plate through simple high strain cold rolling and aging. Materials Characterization, 205. doi:10.1016/j.matchar.2023.113213 (中科院一区,JCR Q1,IF=4.7)
10. Wei, Xinghao, Sun, Lixin*, Zhang, Zhongwu, Zhang, Yang, Luan, Junhua, Jiao, Zengbao, Liu, Chain Tsuan, & Zhao, Gang. (2023). Achieving superior low-temperature toughness in high-strength low-carbon steel via controlling lath boundary segregation. Journal of Materials Research and Technology-Jmr&T, 24, 1524-1536. doi:10.1016/j.jmrt.2023.03.110 (中科院一区,JCR Q1,IF=6.4)
11. Ma, Yaxi, Zhang, Yang, Zhang, Zhongwu, Liu, Liyuan, & Sun, Lixin. (2023). Two novel Zr-rich refractory high-entropy alloys with excellent tensile mechanical properties. Intermetallics, 157. doi:10.1016/j.intermet.2023.107872 (中科院二区,JCR Q1,IF=4.4)
12. Ma, Yaxi, Sun, Lixin*, Zhang, Yang, & Zhang, Zhongwu. (2023). Achieving excellent strength-ductility synergy via cold rolling-annealing in Al-containing refractory high-entropy alloys. International Journal of Refractory Metals & Hard Materials, 114. doi:10.1016/j.ijrmhm.2023.106263 (中科院二区,JCR Q1,IF=3.6)
13. Liu, Naimeng, Cui, Ye, Zhang, Yang, Sun, Lixin, Chen, Dan, Cao, Xue, & Zhang, Z. W. (2023). Effects of Zr addtion on recrystallization behaviors and mechanical properties of FeCrAl alloys. Journal of Materials Research and Technology-Jmr&T, 22, 393-402. doi:10.1016/j.jmrt.2022.11.129 (中科院一区,JCR Q1,IF=6.4)
14. Liu, Liyuan, Zhang, Yang, Zhang, Zhongwu, Wang, Zhengqin, & Sun, Lixin. (2023). Achieving exceptional strength-ductility synergy in a dual-phase high entropy alloy via architected complex microstructures. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 882. doi:10.1016/j.msea.2023.145413 (中科院二区,JCR Q1,IF=6.4)
15. Jiang, Wenqing, Zhang, Zhongwu, Zhang, Yang, Fan, Mingyu, Sun, Lixin, & Liaw, Peter K. (2023). Microstructure and mechanical properties of a nanoscale-precipitate-strengthened reduced-activation refractory complex concentrated alloy. International Journal of Refractory Metals & Hard Materials, 115. doi:10.1016/j.ijrmhm.2023.106289 (中科院二区,JCR Q1,IF=3.6)
16. Huang, Tao, Zhang, Yang, Zhang, Zhongwu, Du, Kang, Li, Junpeng, Liu, Liyuan, Wang, Xiyu, & Sun, Lixin. (2023). Effects of Mo content on the precipitation behavior and martensitic transformation in FeNiCoAlMo alloy. Materials Characterization, 199. doi:10.1016/j.matchar.2023.112787 (中科院一区,JCR Q1,IF=4.7)
17. Han, Jihong, Zhang, Yang, Sun, Zhiyan, Zhang, Yunfei, Zhao, Yingli, Sun, Lixin, & Zhang, Zhongwu. (2023). Enhanced irradiation tolerance of a medium entropy alloy via precipitation and dissolution of nanoprecipitates. Journal of Nuclear Materials, 586. doi:10.1016/j.jnucmat.2023.154693 (中科院二区,JCR Q1,IF=3.1)
18. Dong, Kai, Sun, Lixin*, Zhang, Zhongwu, Li, Zhenxin, Li, Junpeng, Liu, Liyuan, Du, Kang, & Zhang, Yang. (2023). Effects of V addition on microstructure and pseudoelastic response in Fe-Mn-Al-Ni alloys. Intermetallics, 160. doi:10.1016/j.intermet.2023.107954 (中科院二区,JCR Q1,IF=4.4)
19. Wu, Xiang, Zhang, Jiaxuan, Wang, Richu, Zafar, Zainab, Liu, Xiaochun, Liu, Yujing, Qian, Lihua, & Sun, Lixin. (2022). Achieving high strength and high conductivity synergy through hierarchical precipitation stimulated structural heterogeneities in a Cu-Ag-Zr alloy. Materials & Design, 219. doi:10.1016/j.matdes.2022.110777 (中科院二区,JCR Q1,IF=8.4)
20. Huang, Kailan, Zhang, Yang, Zhang, Zhongwu, Yu, Yongzheng, Li, Junpeng, Han, Jihong, Dong, Kai, Liaw, Peter K., Baker, Ian, & Sun, Lixin. (2022). Coupling precipitation strengthening and transformation induced plasticity to produce a superior combination of strength and ductility in a high entropy alloy. Journal of Alloys and Compounds, 929. doi:10.1016/j.jallcom.2022.167356 (中科院一区,JCR Q1,IF=6.2)
21. Han, Jihong, Zhang, Yang, Zhang, Zhongwu, Liu, Liyuan, Li, Junpeng, Yu, Yongzheng, & Sun, Lixin. (2022). Strength-plasticity regulation via nanoscale precipitation and coprecipitation in cobalt-free medium-entropy alloys. Materials Characterization, 193. doi:10.1016/j.matchar.2022.112263 (中科院一区,JCR Q1,IF=4.7)
22. Guo, Hao, Li, Junpeng, Liu, Naimeng, Wei, Xinghao, Fan, Mingyu, Shang, Yongxuan, Jiang, Wenqing, Zhang, Yang, Cui, Ye, Sun, Lixin, Baker, Ian, & Zhang, Zhongwu. (2022). Strengthening and toughening B4C/Al composites via optimizing the Al2O3 distribution during hot rolling. Journal of Alloys and Compounds, 902. doi:10.1016/j.jallcom.2022.163773 (中科院一区,JCR Q1,IF=6.2)
23. Du, Kang, Zhang, Yang, Zhang, Zhongwu, Huang, Tao, Zhao, Guangda, Liu, Liyuan, Wang, Xiyu, & Sun, Lixin. (2022). Elimination of room-temperature brittleness of Fe-Ni-Co-Al-Nb-V alloys by modulating the distribution of Nb through the addition of V. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 855. doi:10.1016/j.msea.2022.143848 (中科院二区,JCR Q1,IF=6.4)
24. Cui, Ye, Zhang, Yang, Sun, Lixin, Feygenson, Mikhail, Fan, Mingyu, Wang, Xun-Li, Liaw, Peter K., Baker, Ian, & Zhang, Zhongwu. (2022). Phase transformation via atomic-scale periodic interfacial energy. Materials Today Physics, 24. doi:10.1016/j.mtphys.2022.100668 (中科院一区,JCR Q1,IF=11.5)
25. Chen, Dan, Wang, Zhenqiang, Zhang, Yang, Lian, Hongkai, Shang, Yongxuan, Fan, Mingyu, Dai, Lu, Sun, Lixin, Cui, Ye, & Zhang, Zhongwu. (2022). Effects of thermo-mechanical treatments on the microstructure and mechanical properties of a 460 MPa grade low carbon bainitic ferrite steel. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 842. doi:10.1016/j.msea.2022.143087 (中科院二区,JCR Q1,IF=6.4)
26. Zhang, Z. Y., Sun, L. X., & Tao, N. R. (2021). Raising thermal stability of nanograins in a CuCrZr alloy by precipitates on grain boundaries. Journal of Alloys and Compounds, 867. doi:10.1016/j.jallcom.2021.159016 (中科院一区,JCR Q1,IF=6.2)
27. Long, B. Z., Zhang, Y., Guo, C. H., Cui, Y., Sun, L. X., Chen, D., Jiang, F. C., Zhao, T., Zhao, G., & Zhang, Z. W. (2021). Enhanced dynamic mechanical properties and resistance to the formation of adiabatic shear band by Cu-rich nano-precipitates in high-strength steels. International Journal of Plasticity, 138. doi:10.1016/j.ijplas.2020.102924 (中科院一区,JCR Q1,IF=9.8)
28. Zhang, Z. Y., Sun, L. X.*, & Tao, N. R. (2020). Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy. Journal of Materials Science & Technology, 48, 18-22. doi:10.1016/j.jmst.2019.12.022 (中科院一区,JCR Q1,IF=10.9)
29. Xu, S. S., Liu, Y. W., Zhang, Y., Luan, J. H., Li, J. P., Sun, L. X., Jiao, Z. B., Zhang, Z. W., & Liu, C. T. (2020). Precipitation kinetics and mechanical properties of nanostructured steels with Mo additions. Materials Research Letters, 8(5), 187-194. doi:10.1080/21663831.2020.1734976 (中科院一区,JCR Q1,IF=8.3)
30. Xu, S. S., Li, J. P., Cui, Y., Zhang, Y., Sun, L. X., Li, J., Luan, J. H., Jiao, Z. B., Wang, X. L., Liu, C. T., & Zhang, Z. W*. (2020). Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel. International Journal of Plasticity, 128. doi:10.1016/j.ijplas.2020.102677 (中科院一区,JCR Q1,IF=9.8)
31. Guo, Hao, Zhang, Zhongwu*, Zhang, Yang, Cui, Ye, Sun, Lixin, & Chen, Dan. (2020). Improving the mechanical properties of B<sub>4</sub>C/Al composites by solid-state interfacial reaction. Journal of Alloys and Compounds, 829. doi:10.1016/j.jallcom.2020.154521 (中科院一区,JCR Q1,IF=6.2)
32. Cai, S. S., Sun, L. X., & Tao, N. R*. (2016). Weakening rolling texture in a nanotwinned copper. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 670, 90-96. doi:10.1016/j.msea.2016.06.005 (中科院二区,JCR Q1,IF=6.4)
33. Sun, L. X., Tao, N. R., & Lu, K*. (2015). A high strength and high electrical conductivity bulk CuCrZr alloy with nanotwins. Scripta Materialia, 99, 73-76. doi:10.1016/j.scriptamat.2014.11.032 (中科院二区,JCR Q1,IF=6)
34. Sun, L. X., Tao, N. R., Kuntz, M., Yu, J. Q., & Lu, K*. (2014). Annealing-induced Hardening in a Nanostructured Low-carbon Steel Prepared by Using Dynamic Plastic Deformation. Journal of Materials Science & Technology, 30(8), 731-735. doi:10.1016/j.jmst.2014.03.008 (中科院一区,JCR Q1,IF=11.2)