工作经历
2023.10-至今,哈尔滨工程大学 核科学与技术学院 讲师(预聘副教授)
主要学术成果:
Li J, Lin M, Wang B, et al. Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants[J]. Energy, 2024, 290: 130101. (SCI一区TOP期刊,IF:9.00,引用次数:3)
Lin M, Li J, Li Y, et al. Generalization analysis and improvement of CNN-based nuclear power plant fault diagnosis model under varying power levels[J]. Energy, 2023, 282: 128905.(通讯作者,SCI一区TOP期刊,IF:9.00,引用次数:10)
Li J, Lin M, Li Y, et al. Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions[J]. Energy, 2022, 254: 124358.(SCI一区TOP期刊,IF:9.00,引用次数:33)
Li J, Lin M, Li Y, et al. Transfer learning with limited labeled data for fault diagnosis in nuclear power plants[J]. Nuclear Engineering and Design, 2022, 390: 111690.(引用次数:25)
Li J, Lin M. Research on robustness of five typical data-driven fault diagnosis models for nuclear power plants[J]. Annals of Nuclear Energy, 2022, 165: 108639.(引用次数:19)
Li J, Lin M. Ensemble learning with diversified base models for fault diagnosis in nuclear power plants[J]. Annals of Nuclear Energy, 2021, 158: 108265.(引用次数:23)
Li J, Lin M. Research on generalization of typical data-driven fault diagnosis methods for nuclear power plants[C]// The 29th International Conference on Nuclear Engineering, Shenzhen, August 8-12, 2022. New York: ASME, 2022: 88934.
Li J, Lin M. Robustness analysis and improvement of fault diagnosis model for nuclear power plants based on random forest[C]// The 28th International Conference on Nuclear Engineering, virtual online, August 4-6, 2021. New York: ASME, 2021: 64109.
李江宽,黄涛,林萌等. 热工水力系统分析程序Courant条件计算方法研究[J]. 核动力工程,2021,42(04):63-67.(引用次数:1)
李江宽,景兴天,林萌等. 反应堆热工水力系统分析程序时间步长控制方案研究[J]. 核动力工程,2021,42(S1):63-69.(引用次数:2)
李江宽,杨里平,林萌等. 用于控制系统现场调试的核电汽轮机仿真模型研究[J]. 核科学与工程,2021,41(06):1175-1182.(引用次数:2)